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Newton’s method is applied to finite-difference approximations for the steady-state com- 
pressible NavierrStokes equations in two spatial dimensions. The finite-difference equations 
are written in generalized curvilinear coordinates and strong conservation-law form and a 
turbulence model is included. We compute the flow field about a lifting airfoil for subsonic 
and transonic conditions. We investigate both the requirements for an initial guess to insure 
convergence and the computational efficiency of freezing the Jacobian matrices (approximate 
Newton method). We consider the necessity for auxiliary methods to evaluate the temporal 
stability of the steady-state solutions. We demonstrate the ability of Newton’s method in 
conjunction with a continuation method to find nonunique solutions of the finite-difference 
equations, i.e., three different solutions for the same flow conditions. .B 1991 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we discuss the development and application of a computer program 
designed to find steady-state solutions of the compressible two-dimensional 
thin-layer NavierStokes equations. The solution strategy is quite straightforward. 
We use finite differences to approximate the governing partial differential equations 
and apply Newton’s method to find a solution of the resulting nonlinear algebraic 
equations. 

Although Newton’s method is frequently used to solve small systems of nonlinear 
algebraic equations, it is less often used for the large systems of nonlinear equations 
generated by the discretization of the partial differential equations for fluid 
dynamics. Gustafsson and Wahlund [l] used Newton’s method for steady com- 
pressible inviscid flows about blunt bodies traveling at supersonic speeds. 
Fornberg [Z] solved for the steady incompressible viscous flow about cylinders for 
Reynolds numbers up to 600. Jackson [3] investigated the onset of transition from 
steady to periodic flow (Hopf bifurcation) by solving an extended set of steady 
incompressible viscous equations. 

Before we proceed to the details of the code development, we digress briefly to 
consider the utility of such a program and thus the motivation for its development. 
Many of the methods used to find steady-state solutions to the Navier-Stokes equa- 
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tions are approximations to Newton’s method. That is, they would be identicah to 
Newton’s method except that approximations are made in the Jacobian matrix 
Most methods make more than one approximation in order to decrease numerica! 
operations and memory requirements for an iteration step. For example, an alter- 
nating direction implicit (ADI) method may use an approximate factorization ef 
the Jacobian matrix to reduce numerical operations as well as memory storage 
requirements. In addition, it is quite common to make approximations for elements 
of the Jacobian corresponding to algebraically complicated terms or terms that 
increase the bandwidth of the factored Jacobian matrix, e.g., terms that arise from 
the turbulence model. Each iteration of the approximate method is less expensive 
than a corresponding iteration of the exact Newton method. owever. each 
approximation affects the convergence rate of the approximate method and. ii more 
than one approximation is made, it is difficult to isolat e the adverse effect of a singie 
approximation. If one begins with the exact Newton’s method, the effect of each 
approximation on convergence can be evaluated independently. 

Although our original intent was to use the program as a convergence eva io- 
tool, the prospect of using Newton’s method to solve spphed flow problems uBr4 
not be overlooked, and we consider this potential in the following sections. The 
memory of current supercomputers (over two hundred million words) makes two- 
dimensionai calcuiations feasible without auxiliary storage devices and, if residual 
reduction to machine accuracy is a primary concern, the computation time may be 
comparable with current “approximate” methods. In addition, ides-ton’s method 
provides a tool for investigating the application of nontime-accurate (i.e., ~!;;i~t’;: 

e compressible steady-state Navierr-Stokes equations. 

2. ALGORITHM 

Our interest in the use of an exact Newton’s method evolved from an investiga- 
tion into the causes of the rather slow residual reduction for current approximate 
methods after the residual has been reduced by approximately three decades. in 
that investigation we chose an ADI scheme and removed all approximations in the 
Jacobian matrix except those associated with the approximate factorization and the 
turbulence model. Since the convergence rates were stil! less than desirable, we 
decided to use Newton’s method, i.e., an exact Jacobian, and Gaussian elimination 
to solve the linear system at each iteration. The exact solver would allow us to 
ensure that we had not overlooked any unknown approximations (mistakes) by 
checking the convergence rate which should, of course, be quadratic. It would also 
a’llow us to evaluate independently the effects of the approx.imate factorization, the 
turbulence model Jacobian approximations, or any other approximation deemed 
desirable. 

A finite-difference approximation for the steady-state two-dimensional 
Navier-Stokes equations can be written symbolically as 

Wq)=O (2 I j 
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where the components of the vector F are the finite-difference approximations to 
the derivatives of the flux terms at each grid point. The components of the vector 
F are functions of the four conservative flow variables (density, momenta in two 
directions, and energy). If the dimension of the grid is J in the 5 coordinate and K 
in the 11 coordinate, the dimension of the vector F is 4JK. For our calculations 
Eq. (2.1) is a finite-difference approximation of the thin-layer Navier-Stokes equa- 
tions written in generalized curvilinear coordinates and strong conservation-law 
form [4]. 

The rz th step of Newton’s method [S] for solving the nonlinear system (2.1) is 

where 

(2.2) 

Aq” = q” + 1 - q”. 

One solves (2.2) for dq” and obtains q”+’ from 

(2.3) 

9 n+l=qn+Aq”, 

The matrix d is the 4JK x 4JK Jacobian matrix 

d = d F/Sq. (2.4) 

One of the difficulties encountered with Newton’s method is the possible 
singularity of the Jacobian matrix, e.g., as some parameter is varied. This problem 
has been addressed by continuation methods, e.g.> Keller[6]. We will return to the 
implementation of continuation methods in Section 6. 

In the discussion of numerical experiments we will refer to results obtained from 
a time-accurate approximation to the unsteady Navier-Stokes equations. Since the 
time-accurate algorithm is also an approximate Newton method, it is worthwhile to 
relate the time-accurate algorithm to (2.2). The II th step of a first-order time- 
accurate AD1 method for the unsteady equations 

can be written [7] 

[I- At A” ][I-drB”]dq”=AtF”? (2.5) 

where A and B are approximations to the Jacobian matrices of the spatially dif- 
ferenced flux vectors in the s’ and v] coordinates, respectively. The matrices A and 
B have the same dimension as d. However, they have a simple structure when 
compared to &‘. For example, with appropriate ordering of the unknown variables, 
they are block diagonal matrices with blocks of dimension 4Jx 4J in one AD1 
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sweep and 3K x 4K in the other AD1 sweep. If three- oint difference approxims- 
lions are used to approximate spatial differences. each 41x U, or 4Kx 4K:, matrix 
is a block tridiagonal matrix with sub-blocks of dimension 4 x 4. If a five-point 
fourth-order numerical smoothing is included, the matrices are block penta- 
diagonal. This special structure of the matrices A and B makes the ADI algorifhm 
attractive from the viewpoint of numerical operation count and computer memory 
requirements. Since the ADI algorithm is implicit it can have good stability proper- 
ties. For fzoirtime-accurate calculations, the time parameter dl can be viewed as a 
relaxation parameter. If the approximate factorization -were remoT;ed from (2.5 3. Ln., 
if we solved 

and if we selected a large value for the parameter 3; { d? + x ) the algorithm would 
be the same as Newton’s method (2.2) (if the Jacobians A and B were exact )~ The 
approximate factorization degrades the convergence when compared to Newton’s 
method. The optimum (for convergence) value o?^ the garameier A: 63~; tbc 

spproxima:e factorization method lies somewhere between zero and Infinity and is 
generally not known n priori. 

Since one of our difficulties in implementing (2.21 for the ihrn-iayer 
Nav.ier%okes equations was due to the size of the matrix ,&, it 1s worthwhite io 

e dimensions of a ‘typical” two-dimensional flow calculation. We choose 
(see Figs. la and lb) which wraps around an NACAOO12 airfoil. kit of 

the trailing edge, the grid points of the coordinate line q = 0 (= 1) are ~o~~~~der~t 
which provides for the necessary continuity of the flow field. We choose 147 mesh 
mtervais (b= 167) in the 2 coordinate which wraps around the airfoil and 58 mesh 
intervals (X= 58) in the q coordinate normal to the airfoil surfa 
in the coordinate normal to the airfoil is I@-’ chords at the 
exponentially away from the body. We used the 
bulence model [8]. The number of unknown variabies is 38,744 j4JK). The ma’rix 
slj’ has approximately 1.5 billion elements, most of which fortunately are zero. The 
size of matrix & implores us to exploit its sparsity andi’or its banded structure. We 
have chosen to exploit the banded structure. In the early stages of our investigation 
we tried sparse solvers but the increase in computer time offset any decrease in 
storage reauirements. However, with the resent improvement of the vectorization 
for gather-scatter operations this conclusion may no longer be valid [Sj. The 
bandwidth R’ of .d with reordering to include the wake continuity tree Secrion 4) 
3s 18% (32K) and the number of elements (including zeros) within rke bandwidth 
is approximately 72 million j128JK*). For our initial caicuiations which uti’rized 
auxiliary storage devices (e.g., disks or solid-state disks), we used two fils for a 
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FIG. 1. Computational C grid around NACAO012 airfoil: (a) complete grid; (bj enlargement of grid 
near airfoil surface. 

total of 144 million words. Although the Cray II has 256 million words of memory, 
during our program development and testing the maximum machine memory 
available was two million words on a Cray XMP or six million words on a 
CDC 205. Therefore, a code utilizing auxiliary storage was developed to deal with 
the “limited” machine memory. The number of numerical operations to solve a 
banded system by Gaussian elimination is approximately NW2/4, where N is the 
dimension of & and W is the bandwidth or, for our sample problem, 3 x 10” 
operations. At a computation speed of 100 million floating point operations per 
second (100 megaflops) each solution would require approximately 6 CPU mirzutes 
for the LU factorization plus the overhead for constructing the Jacobian matrix. It 
is worthwhile to note that a “second” solution with the same Jacobian matrix (i.e., 
no update of the Jacobian and with the LU factors stored) would cost about 
6 CPU seconds. 

4. ALGORITHM IMPLEMENTATION 

As we mentioned in the Introduction, the implementation is tedious but 
straightforward so only a few remarks are necessary. Many of our difficulties arose 
from the size of the problem (i.e., the data management in and out of auxiliary 
memory) and the evaluation of the Jacobian elements associated with the tur- 
bulence model. For the sample problem, the data-management problems disappear 
if sufficient memory is available (e.g., 256 million words on Cray II), however it 
seems that there is always a desire to solve a larger problem (i.e., a problem that 
exceeds currently available memory). Most of the remaining difficulties were 
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associated with the Jacobian matrix elements corresponding to the boundary condi- 
tions. The convergence rate is very sensitive to errors in the Jacobian elements and 
drops from quadratic to linear for seemingly insignificant errors. The known 
theoretical quadratic converge rate (for most applications) of Newton’s method 
provides a good test for correct code. 

Jacobial? Euahaticn 

For purposes of discussion we separate the Jacobian elements into three groups: 
the inviscid terms, the numerical dissipation terms, and the viscous terms. The first 
two groups are easily evaluated from analytical expressions and placed in rhe 
matrix ~8~ The third group, the viscous terms, present more difficulty because of the 
algebraic complexity of the turbulence model. We have chosen to eval.uate the 
Jacobian elements corresponding to the viscous terms numerically. Initially a 
problem was encountered in the region of transition between the “inner” turbulent 
viscosity and the “outer” turbulent viscosity [IX]. This difficulty was traced to a 
discontinuous first derivative in the turbulent viscosity as a function of normal 
distance from the wall. This was remedied (with the aid of . Baldwin4 by the 
introduction of a continuous function. An additional difficulty as encountered in 
the calculation of the maximum of the vorticity function in the turbulence model. 
This latter problem was remedied by the introduction of a spline approximation 
to compute the maximum vorticity. In general, the Jacobian eleiments must be 
continuous functions of the unknowns q if quadratic convergence is to be attained. 

The turbulence model increases the number of nonzero elements in the matrix d. 
Although this additional coupling would have a significans effect on an XDI 
method (increase in matrix bandwith), for Newton’s method it simply increases the 

ensity within the original bandwidth of the unfactored algorithm. 

Matrix Reorderi.ng 

A ‘“natural” ordering of the vector q in (2.2) for a C grid, e.g~* 

with the k index varying most rapidly, leads to a banded matrix ;d with bandwith 
16K (with fourth-order numerical smoothing) iJ’ the gria’ continuity- ir? the wake WV 
neghted. With this ordering of the variables, the grid continuity in the wake 
(II= 0) introduces terms in the upper right and lower left corners of the matrix .ai. 
The matrix is similar to that obtained for an 0 grid when the periodic bounda.ry 
conditions are inciuded. One could develop an algorithm for the LU decomposition 
of a matrix with this special structure. However, we chose to reorder the equations 
so that the matrix d is banded with bandwidth 32K (i.e., &vice the bandw~~~~ of 
the original nonperiodic” matrix). This choice, and the corresponding increase in 
cost, was dictated by the implementation of the algorithm using auxiliary storage 
devices. 
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Banded Slystem Solver 

The basic solver is the LINPACK subroutine SGBFA (together with SGBSL for 
the back substitution) written by Cleve Moler which uses Gaussian elimination 
with pivoting to produce an LU decomposition of a banded matrix. We modified 
the code to reduce machine memory requirements, i.e., to reduce the portion of the 
matrix in machine memory at any given time. In our initial version we kept one 
bandwidth of columns in machine memory and buffered columns in/out as we 
“swept” through the matrix. We allowed two extra columns for buffering/computing 
overlap. After some testing with and without pivoting (which indicated pivoting 
was not necessary) we modified the program so that only one-half bandwidth of 
columns was kept in machine memory. The disk I/O overhead for the LU decom- 
position is minimal but the disk I,/0 overhead for the backsubstitution (which 
requires a minimal amount of CPU time) is substantial. If solid state disks (SSD) 
are used, the I/O overhead is negligible. The LU decomposition runs at about 100 
megaflops on both the CDC and Cray machines. 

Computation Times 

The computation times for the sample problem were approximately 600 CPU s 
for a full Newton iteration. The time required to construct the Jacobian matrix was 
approximately 300 s, most of which was spent in the numerical differentiation to 
compute the turbulence model contributions. The LU factorization using the 
banded solver required about 300 s. A “second” solution with the same (i.e., frozen) 
Jacobian required approximately 6 s. These times were essentially independent of 
the computer, i.e., the Cray machine or the CDC 205. 

5. COMPUTATION RESULTS 

We present two types of computational results. First we present some results that 
verify the expected convergence rates for Newton’s method. We examine the effect 
of initial “guess” or starting solution and investigate the effects of “freezing” the 
Jacobian coefficients for two or more iterations. 

In the second group of computational results we consider the application of 
Newton’s method to “practical” problems. In effect we are seeking an answer to the 
question: How does one use a direct solver in practical applications? For example, 
we investigate the usefulness of a direct solver for parametric studies, the temporal 
stability of converged solutions, and the implication of nonconvergence. By direct 
solver we mean any Newton-like method that obtains solutions to systems of non- 
linear equations of type (2.1) using a nontime-accurate approach to the steady state. 

For the display of the convergence histories, we use the L, norm of the residual 
vector F, 



Typically, we make a semilog plot of (/F/I 1 ( normaiized by the free-stream residuai ; 
as a function of the iteration step (for Newton’s method) or the time step i!cr <Ix 
ADT method). The free-stream residual is evaluated by placing free-&ream con~!ii- 

points except those that lie on tht rigid body W&XC noslip son& 
d. The initial conditions for the ADI method L8:er.z chosen to be %x 

stream and the icitial guess for the NewtoE metho was geneiaily chosen fxm I.& 
ADh soiution after II F (1 z had been reduced approximately three decades~ Le., a fat- 
tar of i 0 ~ 3. The residual can be reduced i from the free stream $./alue ) apprcxi~:;~tei,: 
14 decades before we achieve “‘machine accuracy” (“;i$ bit ~*v.Qr(j), 

T~pkYd Co?;rergcim mstor!, 

The advantage of Newton’s method for solving nonlinear systems of Sgebraic 
equations is of course the superior convergence rare which in the ideal case is qcaii- 
iatic. A “typical” convergence history for ox model probiem 4.s shown in Fig. 1. 
The sng!e of attack, x, was 2”, the Mach number, M. was 0.7 and the 
number. Re. was 0.5 x 10’. These conditions for the WACAWl2 airfoil lead ~JS z. 
sLqercrirical flow, Le., mixed subsonic and supersonic Bow. The initial ‘“guess*’ WAS 
obtained from an ADI solution (Fig. 3), where the norm of the residual bed been 
reduced four decades (10 -“I. After an initial rise in the residual at the firs! ireratlan 
{Fig. 2). the convergence is approximately quadratic untii the fourth iterarion V;~CZ 
rcusdoff errar affects the accuracy of the LU decomposition. 

The convzxgence (or nonconvergence) of Newtoil’s method depends on the iriaia: 

ifi- i 

,o-14 i 
F 

0 1 2 3 4 3 2 
ITEEATiON 

FIG. 2. L2 norm of residual verws Newton’s method Iteration number, 2.3’ angle of attack. 
0.70 Mach camber, 0.5 x 10’ Reyno!ds numbs:. 
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FIG. 3. L? norm of residual versus AD1 method iteration number, 2.0’ angle of attack, 0.70 Mach 
number, 0.5 x lo7 Reynolds number. 

guess for the vector q. In order to find a measure of the quality of the initial guess 
necessary to obtain convergence, we used solutions from the ADI method at several 
points in the “time” history. In general, we found it necessary to reduce the free- 
stream residual by a factor of 1O-3 to obtain a starting solution from the AD1 
method. In most calculations we used a converged Newton’s method solution 
obtained for nearby flow conditions as the initial guess. 

Frozen Jacobian Matrix 

A popular method of improving the numerical efficiency of obtaining a converged 
solution is a modified Newton’s method in which the Jacobian matrix is not 
updated at each “iteration” and the “old” LU factorization is saved and reused. The 
quadratic convergence is lost but the number of numerical operations is dramati- 
cally reduced for each modified iteration since the construction of the Jacobian 
matrix and the LU decomposition of the matrix d are not necessary for each 
substep. The practical difficulty in using this modified method is that one does 
not know a priori the optimum time to freeze the Jacobian matrix or how many 
iterations to take with the Jacobian matrix frozen. 

For the first test case, we choose M= 0.7, CI = 2”, and Re = 0.5 x lo’, since this 
case (see previous section) exhibited quadratic convergence for Newton’s method. 
The initial guess was from the AD1 solution. After each full Newton step (Jacobian 
evaluation and LU factorization) the LU factorization was stored and reused for a 
fixed number nz of modified Newton steps. The number nz was selected to be 1 
(Newton’s method), 2, 3, 4, and 70. The convergence histories are shown in Fig. 4, 
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FIG. 4. Newton’s method with Jacobian matrix frozen for fsed number of steps. L? norm of residual 
versus nondimensional CPU time, 2.0’ angle of attack, 0.70 Mach number, 0.5 x 10’ Reynolds number. 

where we plot the norm of the residual as a function of the nondimensional C 
rime. The CPU time is nondimensionalized by the CPU time required for 
Newton iteration. Although the number of iteration steps increased, the CPU time 
required for the modified Newton method to converge to machine accuracy was 
reduced and for m = 70 was approximately 2.5 55 of that for the full Newton method. 
All cases give the same final solution. 

As a second test of the modified Newton method, we choose the case M = 3.85, 
2 = 1.6’ and Re = 0.5 x 10’. The initial condition was the converged solution of 
M= 0.85, M = 1.5’. Since Newton’s method for these conditions required 12 itera- 
tions (Fig. 5) rather than the normal five or six iterations, we felt it would provide 
a more severe test of the modified method and, in fact, would provide a relativeb’y 
poor convergence history. The convergence histories for m = 1, 2. 3? 4, 70 are shown 

ig. 6. Contrary to our expectations, the modified method performed qlite well 
the CPU time to obtain a converged solution for m = 70 was a~~roxirna~e~y 

10% of that for the full Newton method. 
These results offer encouragement that other approximate Newton methods may 

also achieve convergence in less than 100 iterations. 

As we mentioned previously, it is well known that Newton’s method requires a 
good initial guess to ensure convergence. A practical question is how to avoid 
excessive use of an auxiliary method to obtain initial guesses since this can be 
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FIG. 5. L, norm of residual versus Newton’s method iteration number, 1.6’ angle of attack. 0.85 
Mach number, 0.5 x 10’ Reynolds number. 
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FIG. 6. Newton’s method with Jacobian matrix frozen for fixed number of steps, L, norm of residual 
versus nondimensional CPU time, 1.6’ angle of attack, 0.85 Mach number, 0.5 x IO’ Reynolds number. 
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STABLE 
UNSTABLE 

i 
0 2 .4 .E .a 1.0 !.2 7.4 1.6 l.a 2.0 

ANGLE OF ATTACK. de? 

inconvenient and time consuming. For the next set of caiculatiocs, we +%~re 
irlterested in obtaining the lift coefficient as a function oE angle of attack. W-e stayted 
with a partially converged AD1 solution at zero angle cf artack. With this solution 
as an initial guess we converged the solution with Newton’s method. Next we mxle 
a 0.2 change in angle of attack and, with the zero angle-of-attack SD 

hrtitial guess, we converged the solution with Newton’s method. Proceeding in this 
manner: using the last previously converged solution as the initial guess, we 
continued to increase the angle of attack. The resulting lift curve, M = 0.85 ax! 
Re= 0.5 x IO’, is shown in Fig. 7. Beyond the angle af attac’k of 1.75’ Newon’c I i 
method fails to converge. A natural question is what is the significance of &is ias:; 
converged solution. We consider this question in the following paragraph and agair! 
in Section 6. 

TemporoE St&riPiEitl: of Steady-State Solutiom _ _ 
A significant disadvantage of Newton’s method (or any other direct sa!ve;) i~b 

computational aerodynamic applications is the fact that: although we may o:r)rain 
a solution to the steady-state equations, we do not know if the solution is tem- 
porally stable or unstable. The calculation of the previous section is a good exam@ 
to consider. We were able to obtain a Newton’s solution up to some max:m~m 
angle of attack, i.e,+ 1.75”, beyond which Newton ‘3 method failed to converge. ‘What 
about solutions beyond this angle of attack? It is well known I at for sulE&xriy 
high angle of attack, an airfoil will exhibit “buffeting,” i.e.. unsteady osci‘ilations c! 
the flow field in a limit-cycle type motion although the airfoil itseli is fixed ;I@;: 
In fact, if a time-accurate method is used to calculate the Bow Sreld for the c&di- 
tions for which we were unable to obtain a Newton’s hod solution; we i:xSxd 
rTind such an unsteady phenomenon. In Fig. 8 we s the lift coefficient Cme 
history computed with a time accurate ADI method. might jump to the cz- 
elusion that there is a direct correlation between the nonconvergence 
method and the buffet boundary (the angle of attack at which tbe 
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FIG. 8. Lift coefficient versus nondimensional time, ADI method, 1.8’ angle of attack, 0.85 Mach 
number, 0.5 x 10’ Reynolds number. 

temporally unsteady or linearly unstable). However, this is not the case. In order 
to establish the linear stability of each solution obtained from Newton’s method we 
calculated the eigenvalue of the matrix sY, Eq. (2.2), with the largest real part. If the 
real part of this eigenvalue is positive, then the solution is (linearly) unstable and 
we should anticipate buffeting if the solution is calculated with a time-accurate 
method. The temporally unstable solutions (as determined by the eigenvalue 
analysis) are indicated by open symbols in Fig. 7. The time histories for 
LY = 1.5, 1.6, 1.75” obtained using the AD1 method are shown in Figs. 9a, b, c. The 
limit cycle (i.e., bounded oscillatory solution) is a result of the linear instability 
coupled with the nonlinear effects. 

0 20 40 60 80 100 120 
NONDIMENSIONAL TIME 

FIG. 9. Lift coefficient versus nondimensional time, ADI method, 0.85 Mach number, 0.5 x 10’ 
Reynolds number, for angle of attack equal to (a) 1.50”, (b) 1.60”. and (c) 1.75”. 
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-We conclude that Newton’s method alone cannot be used to define the buffet 
boundary although in this case the angle of attack for which Newton’s met 
to converge provides a rough estimate. (In Section 6 we apply a continuation 
method to proceed byond tl= 1.75”.) This also points out that one should always 
be aware that any solution obtained by Newton’s method coiria’ be temporally 
unstable and some additional information would be needed to make the stability 
determination. An advantage of using Newton’s method in conmction with the 
stability analysis, as opposed to some approximate Newton’s method, is the 
immediate availability of the matrix d and its kU factorization. 

Approximate Newton methods sometimes have difficulty with convergence far 
low subsonic Mach numbers. We choose for a test case M= 0.08 and Re = 0.5 x 106. 
Once again, we used a time-accurate ADI method to obtain a zero angle of attack 
starting solution and applied Newton’s method to obtain a converged soiution, We 
proceeded to increase the angle of attack using the previously converged Newton 
solution for the starting solution at the new angle of attack (Fig. 10). 

At an angle of attack of 9.13’ an interesting event occured. As the angle of attack 
was increased slightly, the solution changed dramatically and the lift coefficient was 
significantly reduced. Further increases in angle of attack resulted in small changes 
in the lift coeflicient. Next we decreased the angle of attack. As we decreased the 
angle of attack below 9.13”, the lift did nor increase to the previously computed 
value, but followed a lower value lift curve. This smooth transition continued 
(lowering angle of attack) until 7.99”. Below this angle of attack? no solution could 
be obtained; i.e., Newton’s method would not converge for a lower angle of attack 
with the 7.99” converged solution as the initial guess. We thus obtained the lift 
curve shown in Fig. 10, i.e., nonunique solutions for fixed angle of attack between 
7.99” and 9.13’. In this range there is an upper branch (higher lift coefficient> and 

0 2 4 6 8 10 12 14 16 18 20 

ANGLE OF ATTACK, deg 

FIG. 10. Lift coefficient versus angle of attack, 0.10 numerical smoothirg coeficient, 0.08 Mach 
number, 3.5 x IO6 Reynolds number. 
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FIG. 11. Stream function contours for nonunique solutions, 9.13” angle of attack, 0.10 numerical 
smoothing coefficient, 0.08 Mach number, 0.5 x lo6 Reynolds number: (a) high-lift solution; (b) low-lift 
solution. 

a lower branch (lower lift coefficient). For the upper branch of the lift curve, there 
is a small separation bubble (recirculation region) just aft of the leading edge of the 
airfoil (Fig. lla). For the lower branch of the lift curve, the separation bubble is 
much larger and extends nearly to the trailing edge of the airfoil as shown in 
Fig. 1 lb. 

Our experience at transonic Mach numbers should, of course, make us suspicious 
of the temporal stability of the nonunique solutions (and indeed of any solution 
obtained from Newton’s method or any other nontime-accurate method.) Once 
again, we numerically calculated the eigenvalue (of the d matrix) with maximum 
real part for solutions near the hysteresis loop of Fig. 10. All the solutions were 
stable. The connection between the two isolated branches of Fig. 10 will be 
considered in Section 6. 

Effect qf Numerical Smoothing on Solutions 

If, as in our calculations, centered difference approximations are used to 
approximate hyperbolic terms, it is well known that the shortest wavelengths are 
not dissipated and this can lead to nonlinear instabilities in practical calculations. 
In order to overcome this problem, it is common practice to add numerical 
smoothing terms to the finite difference approximation [7]~ In the present calcula- 
tions this was accomplished by adding a centered five-point dissipation term. In 
time-accurate calculations the choice of the smoothing coefficient is generally quite 
restricted by the numerical stability and accuracy; i.e., too little smoothing results 
in high-frequency spatial oscillations which lead to nonlinear instability and too 
much smoothing results in numerical inaccuracy. Although noncentered difference 
approximations do not require the addition of numerical smoothing, they have 
inherent numerical smoothing which is determined by the choice of the spatial 
difference approximation and the grid spacing. 

With Newton’s method the temporal numerical stability limits on explicit 
smoothing coefficients are removed. Therefore, Newton’s method allows us to do a 
more thorough investigation of the effect of numerical smoothing on the steady- 
state solutions. For this study we choose the low subsonic Mach number, M= 0.08 
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Fit. 12. Lifr coefficient versus angle of attack. 0.20 rrumericai smoothng coefkienr, 0.08 hIa& 
r.umber. 0.5 x lo6 Reynolds number. 

arid Re = 0.5 x I@. In Figs. 10, 12, 13 we show the lift coefficient versus angle-& 
attack curves for three different values of the fourth-order numerical smocthicg 
coefficient. Although the three curves have qualitative similarities, the angle cf 
attack at which the abrupt change in solution, e.g., lift. occurs is not constant aaid 
the hysteresis does not occur for the largest value of the smoothing parameter. The. 
resolution of the cor!‘eci solution to the Navier-Stokes equations requires a grid- 
refinement study. The conclusion to be reached from the presented results Is &Z-I 
Newton’s method can be used to compute flow fields with iarge separatiotl bubbkes 
and hysteresis effects. In addition, it can be used for pxametric studxs which would 
be diff~cul.t with time-accurate algorithms because of temporal icstabilities, 

i 

0 2 4 6 8 10 12 14 16 18 20 
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FE 13. Lift coefkient versus angle of attack, 0.40 ncxerical smoothing co&c&t, 0.25 [\$a& 
r?;rmber. 0.5 x 10” Reynolds nilmber. 
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6. ARCLENGTH CONTINUATION ALGORITHM 

Our inability to obtain an uninterrupted sequence of nearby solutions for small 
discrete changes in parameter, e.g., a “continuous” lift versus angle-of-attack curve, 
can in some cases be traced to a singular Jacobian matrix. For example, in the case 
depicted by Fig. 10 if one monitors the sign of the determinant of the Jacobian 
matrix as the angle of attack is increased (beginning at c1= 00), one finds that the 
determinant remains positive until CI ~9.13” at which point the determinant 
approaches zero and we are unable to continue. The problem is, of course, not 
unique to our calculations but occurs frequently in the solution of systems of non- 
linear algebraic equations. The solution to the problem has been addressed quite 
eloquently by Keller and others (see, e.g., [6]). For our code we adopted the 
arclength continuation method of Keller. 

The basic ingredient of the method is to remove the singularity of the Jacobian 
matrix by adding a new equation (and a new variable) to the system of equations 
(2.1) such that the determinant of the enlarged system is not zero. The new equa- 
tion also introduces a new parameter, i.e., the arclength. We begin by rewriting (2.1) 

F(q, a) = 0 (6.1) 

to emphasize the dependence on CI which will now be treated as an unknown 
variable. 

Next we introduce a new equation 

wq, 4 3) = 0 (6.2) 

which relates the original unknown vector, q, to CI and the new arclength parameter, 
s. For our calculations we tried several choices for N including the most obvious, 

Nq, a, s) = llq - qoll* + (a - ao)‘- (s - ~0)~ = 0, (6.3 1 

where q0 is a previously computed (and stored) solution corresponding to CI = a0 
and s0 = ~(a~). Our implementation of this choice was not successful and we fmally 
selected Keller’s pseudo-arclength normalization 

N(q,a,.s)= $(so) .r(q-q,)+ $(s,,) (M-Q-((s--o)=0 L 1 [ 1 (6.4) 

which was found useful by Winters et al. [ 111. We compute the partial derivatives 
with respect to s numerically from two previously computed and stored solutions; 
i.e., we require two solutions to begin the arclength continuation method. Now we 
solve the enlarged system, (6.1) plus (6.4), using Newton’s method, i.e., 

(6.5) 
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where d is given by (2.4). The Jacobian elements dF/&x are computed numerically 
using a small perturbation of the current K The enlarged system (6.5) has one 
additional (dense) column and one additional (dense) row when compared to (2.2). 
The new system can be solved efficiently [6] with the algorithm used for (2.2). 
We require just one LIJ decomposition of d and two back substitutions. 2%)~ 
the increased expense is only a few percent of the original algorithm cost. I: i.s 
interesting to note that this solution procedure seems to contradict our original 
intent to remove the singularity of d. Wowever, as the arclength algorithm 
proceeds through the parameter value corresponding to a singular &, it never 
‘“lands” precisely on the critical value. In our applications, which are summarized 
in the following paragraphs, we experienced no problems with this algorithm as the 
solutions proceeded through the limit or turniflg point, i.e., t e point where :he 
determinant changes sign. 

Len’ Subsonic Mach Number Application 

We applied the arclength method to the low Mach number case shown in 
Fig. 10. We started with two solutions computed with the original algorithm for 
CC = O3 and CL = 2”. Proceeding with the arclength algorithm we obtained the result 
shown in Fig. 14, i.e., a series of discrete points connecting the two branches ~&own 
in Fig. 10. Instead of two solutions for certain fixed values of u we obtain three 
solutions. We used the eigenvalue analysis to check the temporal stability of :he 
ire31’ solutions (i.e., the solutions between the two turning points) and found them 
CO be unstable (as one would expect from the nonlinear theory [6]). Although one 
might not be interested in the temporally unstable solutions, the arclength 
algorithm provides a systematic approach to trace ull cofrnecteti branches of the 
solution if two solutions on one branch are known. In these calculations we did not 
encounter any bifurcations except for the Wopf bifurcation discussed in t 
paragraph. 

Q 2 4 6 6 10 12 14 16 16 23 
ANGLE OF ATTACK, deg 

FIG. 14. Lift coefficient versus angle of attack, 0.10 numerical smoothing coefficient, 0.08 Mach 

number. 0.5 x IO6 Reynolds number. 
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FIG. 1.5. Lift coefficient versus angle of attack, 0.85 Mach number, 0.5 x 10’ Reynolds number. 

Transonic Mach Number Application 

The other instance where we were unable to proceed using the original algorithm 
was the transonic case depicted in Fig. 7. There is a temporal instability (Hopf 
bifurcation in the nonlinear theory terminology) at CI = 1.55”; however, we were 
able to proceed beyond this point to approximately CI = 1.75” before the original 
algorithm failed to converge. At this point we introduced the arclength algorithm 
and obtained the solutions shown in Fig. 15. For all values of c( the sign of the 
determinant remains unchanged. The significance, if any, of the scalloped shape of 
the curve is not known and deserves further investigation. 

7. CONCLUDING REMARKS 

We have demonstrated the feasibility of solving the finite-difference approxima- 
tion for the two-dimensional steady-state thin-layer compressible NavierStokes 
equations using Newton’s method on the present generation of supercomputers. 
Although the expense in memory and CPU time per iteration is high, the exact 
Newton’s method is useful in both the-evaluation of approximate methods and as 
a tool to study the application of direct solvers, i.e., nontime-accurate approximate 
Newton methods. In some special cases where present approximate methods exhibit 
slow convergence (or fail to converge to machine accuracy), the exact Newton 
method may prove to be an economical choice. In addition, with improved linear 
system software for the LU decomposition and optimized coding of the Jacobian 
evaluation, we believe our CPU times could be significantly reduced. 

We have investigated the effect of freezing the Jacobian for a tixed number of 
iterations and have shown the resulting saving in computer time required to obtain 
a converged solution. These results offer encouragement that other approximate 
Newton methods may also achieve convergence in less than 100 iterations. 

Our results demonstrate the ability of Newton’s method in conjunction with a 
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continuation method to obtain nonunique solutions if the difference equations have 
multiple solutions. They also demonstrate the necessity of a capabilltji to evaluate 
the temporal stability of steady-state solutions obtained with direct solvers. For 
example, if a steady-state solution is obtained by Newton’s method, it may be 
temporally stable or unstable. The stability must be determined by some auxiliary 
method, e.g., an eigenvalue analysis, a time-accurate method, or a continuatnon met 
bad applied to an extended set of equations. On the other hand, if no steady state 
exists, a direct solver will not converge and a time-accurate algorithm is required 
to obtain a solution to the time-dependent equations. 
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